Naval Hydromechanics Science and Technology

 "Hydromechanical performance is fundamental to the basic fighting capability of surface ships and submarines in terms of speed, stealth, seakeeping, endurance, maneuverability, and human performance"


Description :
         the Office of Naval Research (ONR) has promoted the world leadership of the United States in naval hydromechanics by sponsoring a research program focused on long-term S&T problems of interest to the Department of the Navy, by maintaining a pipeline of new scientists and engineers, and by developing products that ensure naval superiority. At the request of ONR, the National Research Council, under the auspices of the Naval Studies Board, conducted an assessment of S&T research in the area of naval hydromechanics. The Committee for Naval Hydromechanics Science and Technology was appointed to carry out the following tasks during this study: assess the Navy’s research effort in the area of hydromechanics,identify non-Navy-sponsored research and development efforts that might facilitate progress in the area, and provide recommendations on how the scope of the Navy’s research program should be focused to meet future objectives. 
naval hydromechanics is defined as the study of the hydrodynamic and hydroacoustic performance of naval ships, submarines, underwater vehicles, and weapons. The importance, value, and contributions of naval hydromechanics science and technology (S&T) to the success of naval forces can best be understood from a historical perspective. The era most relevant to the purpose of this study extends from the formation of the Office of Naval Research (ONR) shortly after World War II to the present. During that period, the technical accomplishments of naval hydromechanics are epitomized by those of the David W. Taylor Model Basin (now the Naval Surface Warfare Center, Carderock Division (NSWCCD)). Some examples of its accomplishments, along with other examples from two white papers on naval hydromechanics written by Marshall P. Tulin1 and Thomas T. Huang,2 are described here.

0 comments: